

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-800480AYTZQW-TARH
APPROVED BY	
DATE	

Preliminary Specification

Formal Specification

APPROVED BY	CHECKED BY	ORGANIZED BY		
Patrick	Jessica	Mantle		

Date	: 2021	/11/16
2010		,,

AMPIRE CO., LTD.

Marelcom AG

Bahnhofstrasse 1

CH-8772 Nidfurn

T +41 (0)55 647 30 80

F +41 (0)55 647 30 83

office@marelcom.ch www.marelcom.ch

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2021/11/16		New Release	Mantle

1.0 General Descriptions

1.1 Features

7 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 8" TFT-LCD panel and backlight unit.

(1) Construction: 7" a-Si TFT active matrix, Projective Capacitive Touch and White LED Backlight .

(2) Resolution (pixel): 800(R.G.B) X 480

(3) Number of the Colors : 16.7M colors (R, G, B, 8bit digital each)

- (4) LCD type : IPS, Transmissive , normally Black
- (5) 24 Bit LVDS interface

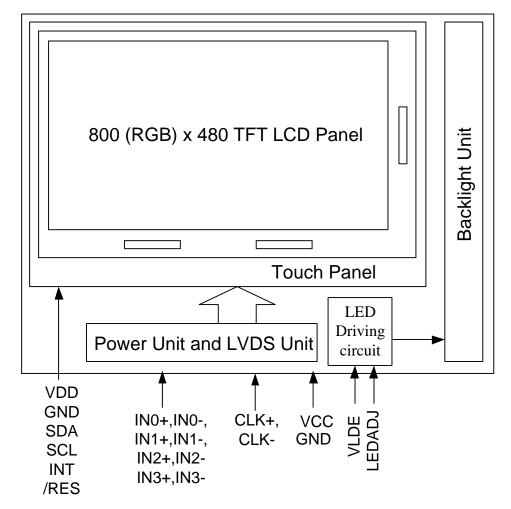
(6) Power Supply Voltage: 3.3V single power input. Built-in power supply circuit.

(7) Projective Capacitive Touch

a. Interface : I2C

b. Touch Controller: EXC80W32

1.2 Product Summary


NO	ltem	Specification	Remark
1	LCD Size	7.0 inch (Diagonal)	
3	Resolution	800 x 3 (RGB) x 480	
4	Display Mode	Normally Black.	
5	Pixel pitch	0.1926 (W) x 0.179(H) mm	
6	Active area	154.08(W) x 85.92(H) mm	
7	Module Size	184.0(W) x 128.0(H) x 12.8(T) mm	Note 1
8	LCD Surface	Anti-Glare	
	treatment		
9	Color arrangement	RGB-stripe	
10	Luminance	470	Cd/m ²
11	Viewing Direction	All direction	

(Note1) Refer to the mechanical drawing.

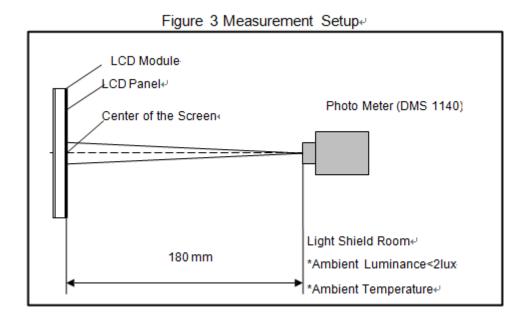
1.3 Functional Block Diagram

Shows the functional block diagram of the LCD module.

2. Absolute Maximum Ratings

Item	Symbol	Va	lues	UNIT	Note	
nem	Symbol	Min.	Max.	UNIT	Note	
Power voltage	VDD	-0.5	3.96	V	GND=0V	
Power voltage of LED Driver IC	VLED	-0.3	6	V	GND=0V	
Voltage range at any terminal		-0.5	VCC+0.3	V		

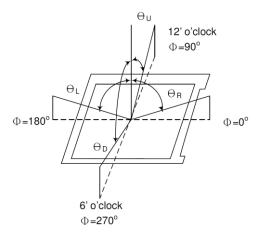
2.1 Environment Absolute Rating


Item	Symbol	Min.	Max.	Unit	Note
Operating Temperature	Тора	-20	70	°C	
Storage Temperature	Tstg	-30	80	°C	

3. Optical Specifications

Item	Conditions		Min.	Тур.	Max.	Unit	Note	
	Horizontal	θ ∟	(80)	(88)	-			
	TIONZONIAI	θ _R	(80)	(88)	-	degree	(1) (2) (3)	
Viewing Angle (CR>10)	Vertical	θ _υ	(80)	(88)	-	uegree	(1),(2),(3)	
(CK>10)	Ventical	θ _D	(80)	(88)	-			
Contrast Ratio	Center		(700)	(900)	-	-	(1),(2),(4) θx=θy=0°	
Response Time	Rising + Falling		-	(30)	(40)	ms	(1),(2),(5) θx=θy=0°	
	Red x			(0.633)		-		
	Red y			(0.329)		-		
Color	Green x Green y		Typ (-0.05)	(0.320)	Тур (+0.05)	-	(1),(2),(3)	
Chromaticity				(0.613)		-		
(CIE1931)	Blue x			(0.150)		-	θx=θy=0°	
	Blue y			(0.053)		-		
	White x		Тур.	(0.308)	Тур.	-		
	White y		(-0.05)	(0.332)	(+0.05)	-		
NTSC	-			(70)	-	%	(1),(2),(3) θx=θy=0°	
White Luminance	Center Po	pint	(375)	(470)	-	cd/m ²	(1),(2),(6) θx=θy=0°	

Note (1) Measurement Setup:


The LCD module should be stabilized at given temperature(25° C) for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Note (2) The LED input parameter setting as:

I_LED: 180mA

Note (4) Definition Of Contrast Ratio (CR)

The contrast ratio can be calculated by the following

expression: Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255, L0: Luminance of gray level 0

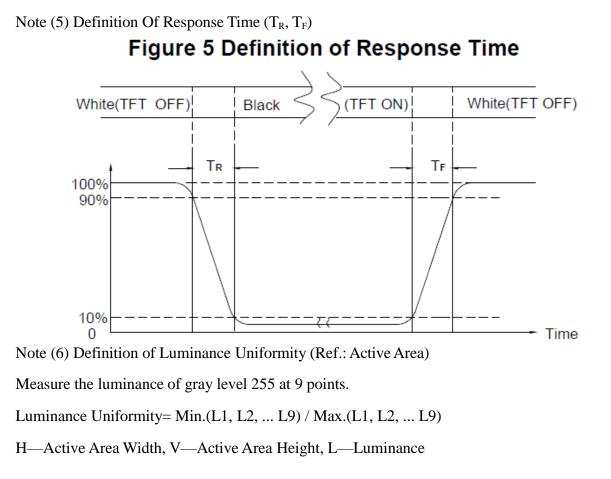
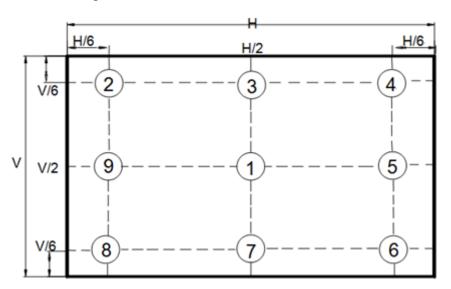
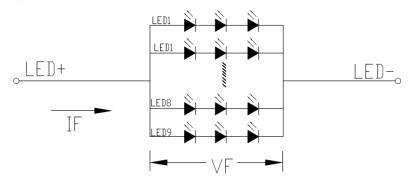



Figure 6 Measurement Locations of 9 Points

Pin No.	Symbol	Function
1	VDD	POWER SUPPLY:3.3V
2	VDD	POWER SUPPLY:3.3V
3	GND	Power Ground
4	GND	Power Ground
5	IN0-	Transmission Data of Pixels
6	IN0+	Transmission Data of Pixels
7	GND	Power Ground
8	IN1-	Transmission Data of Pixels 1
9	IN1+	Transmission Data of Pixels 1
10	GND	Power Ground
11	IN2-	Transmission Data of Pixels 2
12	IN2+	Transmission Data of Pixels 2
13	GND	Power Ground
14	CLK-	Sampling Clock
15	CLK+	Sampling Clock
16	GND	Power Ground
17	LED ADJ	LED Dimming pin. Dimming by PWM 100Hz~200kHz.
18	VLED	Power supply of LED driving IC.
19	IN3-	Transmission Data of Pixels 3
20	IN3+	Transmission Data of Pixels 3


4. Interface Connections

5. Backlight Unit

ltem	Symbol	Min.	Тур.	Max.	Unit	Note
LED Driver Voltage	VLED	4.5	5.0	5.5	V	
Power Supply Current For LED Driver	ILED	-	380	-	mA	VLED=5V VADJ=3.3V (duty 100%)
ADJ Input Voltage	V _{ledadj}	-	3.3	-	V	duty=100% Note(1)
LED voltage	V_{BL}	9.0	9.3	9.6	V	IBL=180mA
LED current	IBL		180		mA	Ta=25°C
LED Life Time	-		20K		Hour	

Note (1) The constant current source is needed for white LED back-light driving. When LCM is operated over 60 deg.C ambient temperature, the I_{LED} of the LED back-light should be adjusted to 135mA max

Note (2) Brightness to be decreased to 50% of the initial value(Ta=25°C).

Note (3)	VI FDADJ is P	WM signal input.	. It is for brightness control.	
		with orginal input.	. It is for bright 1000 bornt of.	

ITEM	SYMBOL	MIN	TYP	MAX	UNIT
ADJ signal frequency	fрwм	100		50K	Hz
ADJ signal logic level High	VIH	2V		VLED (5.0V)	V
ADJ signal logic level Low	VIL	0		0.5	V

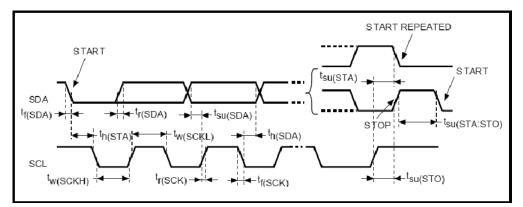
6. Touch Panel Unit

6.1 Basic Characteristic

ITEM	SPECIFICATION
Туре	Projective Capacitive Touch Panel
Activation	10-fingers or Signal-finger
X/Y Position Reporting	Absolute Position
Touch Force	No contact pressure required
Calibration	No need for calibration
Report Rate	Approx 100 points/sec
Resolution	16384 x 16384
Interface	I2C
Control IC	EXC80W32

Specify the normal operating condition

(GND=0V)

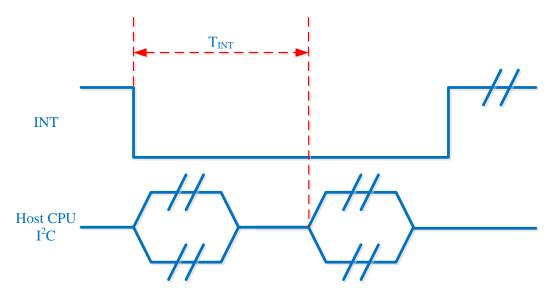

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	VDD	3.0	3.3	3.6	V	
Low Level Input Voltage	VIL	0		0.8	V	1
High Level Input Voltage	VIH	0.8*VIN		VIN	V	1
Power Consumption	Ivdd		T.B.D		mA	

Note 1: SDA, SCL,

6.2 Interface

Pin No.	Symbol	Function
1	GND	POWER GND
2	SDA	I2C DATA
3	SCL	I2C CLOCK
4	VDD	3.3V
5	INT	Interrupt Request pin. Active Low
6	/RES	Reset pin to Master Chip

6.3 Timing


Symbol	Parameter	SCL =	100KHz	SCL =			
	Farameter	Min	Мах	Min	Max	Unit	
tw(SCLL)	SCL clock low time	4.7		1.3			
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs	
t _{su(SDA)}	SDA setup time	250		100			
t _{h(SDA)}	SDA data hold time	0		0	900]	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300	ns	
^t f(SDA) ^t f(SCL)	SDA and SCL fall time		300		300		
t _{h(STA)}	Start condition hold time	4.0		0.6			
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs	
t _{su(STO)}	Stop condition setup time	4.0		0.6		μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μs	

Touch Controller software protocol

The EXC80W32 7-bit slave Address=0x2A

• INT operating mode

I²C Transaction Frame: each I²C transaction frame transfers one I²C packet data. The INT pin is low level trigger. The controller will pulls IRQ pin low until no data in the controller buffer.

Report rate = $1/T_{INT}$. It depends on properties of touch panel such as resistive value, I^2C clock rate , channel number , thickness and ,material of cover lens , etc.

For better touch performance, we strongly recommend using the 400K clock rate.

• The complete Read back data format:

	From Device to Host				
	From Host to Device				
S = START condition					

- Sr = Repeat START condition
- P = STOP condition

R = Data direction READ (SDA HIGH)

W = Data direction WRITE (SDA LOW)

Ack = Acknowledge (SDA LOW)

Nak = Not acknowledge (SDA HIGH)

Address = 7-bit (EXC80W60 = 0x2A)

DATA = 8bit

Read Mode : Host-receiver , Device-transmitter.

S	Address	R	Ack	Len-LSB	Ack	Len-MSB	Ack	DATA0	Ack
---	---------	---	-----	---------	-----	---------	-----	-------	-----

DATA1 Ack DATA63 Nack P

Host need to read 66 Bytes for input report retrieval.

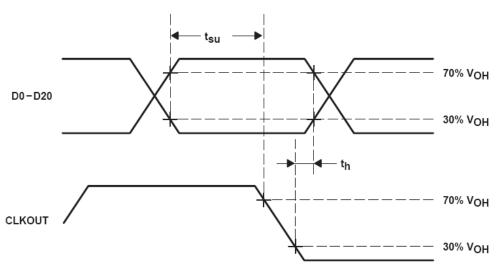
The 1st Byet0 and 2nd Byte1 (Len-LSB and Len-MSB): The value of "Len" is calculated

by 2 Bytes for "Len: field and n Bytes for valid "Input Data in the payload.

The 3^{rd} DATA0 ~ 66^{th} DATA65 are defined as :

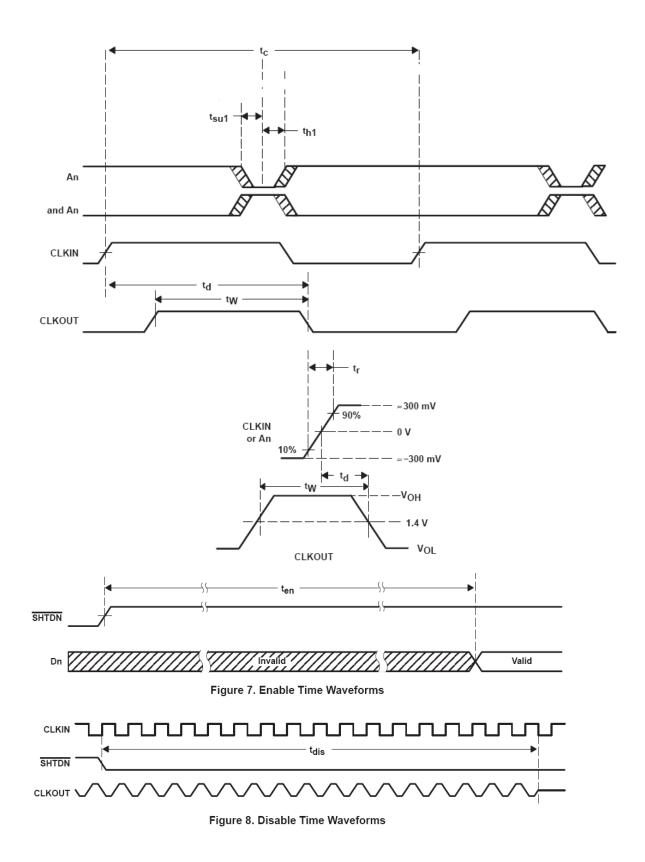
	1110 5	DIMIO	00 D/1	11105 110	defined as	•				
DATA0	DATA1 ~ I	DATA 63								
Report ID	The definit	The definitions are differences depends on report ID								
Report ID										
= 0x18	DATA1	Num of	Fingers : A	Actual con	tact in this	report				
Multi	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7	DATA8	DATA9	DATA10	DATA11
Touch	Contact d	ata 1								
format	Cont	tact data	format :							
	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7	DATA8	DATA9	DATA10	DATA11
(without	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
width and	Status	Finger	Х	Х	Y	Y	Reserved	Reserved	Reserved	Reserved
height,		ID	(LSB)	(MSB)	(LSB)	(MSB)				
16K X/Y	• Statu	s: Bit0=1	for touch I	Down . Bit	t0=0 for Li	ift Off.				
resolution)	• X/Y	resolution	: 16384 (0	~16383)						
100010000000000000000000000000000000000	The follo	wing Cont	act data are	e with the	same form	nat.				
	DATA12	DATA13	DATA14	DATA15	DATA16	DATA17	DATA18	DATA19	DATA20	DATA21
					Contac	et data 2				
	DATA22	DATA23	DATA24	DATA25	DATA26	DATA27	DATA28	DATA29	DATA30	DATA31
						t data 3			-	
	DATA32	DATA33	DATA34	DATA35	DATA36	DATA37	DATA38	DATA39	DATA40	DATA41
						et data 4				
	DATA42	DATA43	DATA44	DATA45	DATA46	DATA47	DATA48	DATA49	DATA50	DATA51
						et data 5				
	DATA52	DATA53	DATA54	DATA55	DATA56	DATA57	DATA58	DATA59	DATA60	DATA61
	Scan Time				Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	DATA62 Reserved	DATA63 Reserved								
	NUSCI VEU	NUSCI VEU								
	The device	innut ren	ort contain	s mavimu	m 5 contac	ts in one I	^{2}C frame	If it must r	enort 10 a	ontacte
	device will	hreak the	se down in	to $2 I^2 C f_r$	ames that	report 5 cc	ontacts eac	h n must l	cport 10 C	macis,
	The "Num								econd fran	ne is O
		or ringers	5 0111y 5110		inst manne.		i or ringer			10 15 0.

7 INPUT SIGNAL


7.1 LVDS Signal

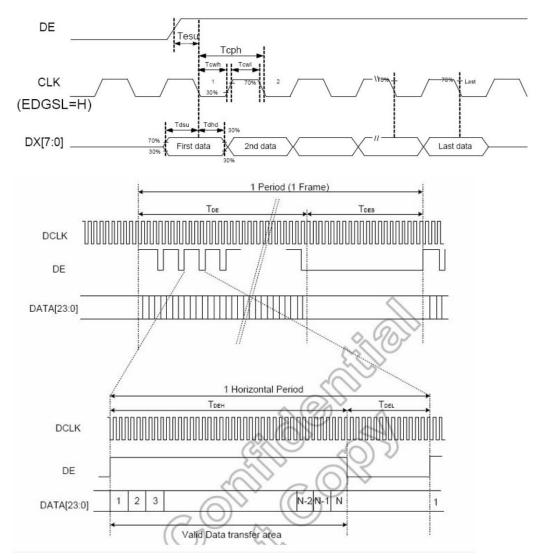
switching characteristics over recommended operating conditions (unless otherwise noted)

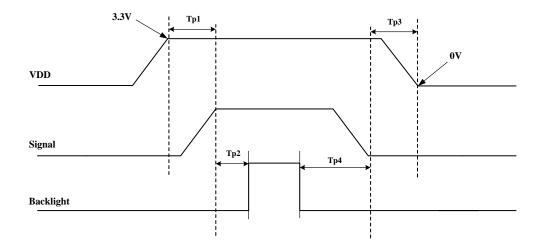
	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
t _{su}	Setup time, D0–D20 to CLKOUT↓		5			ns
th	Data hold time, CLKOUT↓ to D0–D20	CL = 8 pF, See Figure 5	5			ns
^t (RSKM)	Receiver input skew margin§ (see Figure 7)	t _c = 15.38 ns (±0.2%), Input clock jitter < 50 ps¶,	550	700		ps
t _d	Delay time, CLKIN↑ to CLKOUT↓ (see Figure 7)	V _{CC} = 3.3 V, t _c = 15.38 ns (±0.2%), T _A = 25°C	3	5	7	ns
t _{en}	Enable time, SHTDN to phase lock	See Figure 7		1		ms
t _{dis}	Disable time, SHTDN to off state	See Figure 8		400		ns
tt	Transition time, output (10% to 90% t_{f} or $t_{f})$ (data only)	CL = 8 pF		3		ns
tt	Transition time, output (10% to 90% $t_{f} \mbox{ or } t_{f})$ (clock only)	CL = 8 pF		1.5		ns
t _w	Pulse duration, output clock			0.50 t _C		ns


[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [§] The parameter t_(RSKM) is the timing margin available to allocate to the transmitter and interconnection skews and clock jitter. The value of this parameter at clock periods other than 15.38 ns can be calculated from t_{RSKM} = tc/14 – 550 ps.

 \P [Input clock jitter] is the magnitude of the change in input clock period.

PARAMETER MEASUREMENT INFORMATION


Figure 5. Setup and Hold Time Waveforms


7.2 Timing of LCD Timing controller

Parameter	Symbol		Unit		
Parameter	Symbol	Min.	Тур.	Max.	
Data setup time	Tdsu	6	-	-	ns
Data hold time	Tdhd	6	-	-	Tcph
DE setup time	Tesu	6	-	-	Tcph
CLK frequency	Fсрн		33.26		MHz
CLK period	Тсрн		30.06		ns
CLK pulse duty	Тсwн	40	50	60	%
DE period	TDEH+TDEL	1000	1056	1200	Тсрн
DE pulse width	TDEH	-	800	-	Тсрн
DE frame blanking	Tdeb	10	45	110	TDEH+TDEL
DE frame width	TDE	_	480	-	TDEH+TDEL

Note : We suggest using the typical value, so it can have better performance.

8 Power On / Off Sequence

Item	Symbol		Value			Remark
	•	Min.	Тур.	Max.	Units	Remark
VDD on to signal starting	Tp1	5	-	50	ms	
Signal starting to backlight on	Tp2	150	-	-	ms	
Signal off to VDD off	Tp3	5	-	50	ms	
Backlight off to signal off	Tp4	150	-	-	ms	

9 Reliability Test Items

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C, t=240 hrs	
Low Temperature Operation	-20±3°C, t=240 hrs	
High Temperature Storage	80±3°C, t=240 hrs	1,2
Low Temperature Storage	-30±3°C, t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-30°C (30min) ~ 80°C (30min) 100 cycles	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Note 3 : The module shouldn't be tested more than one condition, and all the test conditions are independent.

Note 4 : All the reliability tests should be done without protective film on the module.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

10 General Precautions

10-1 Safety

Liquid crystal is poisonous. Do not put it your month. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

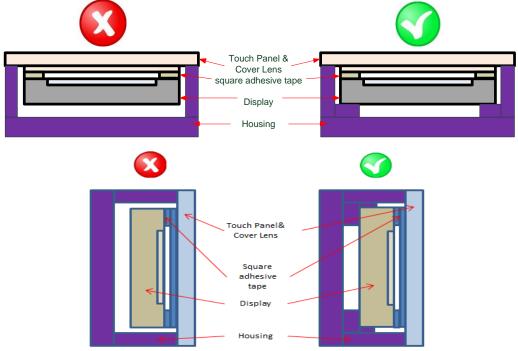
10-2 Handling

- (1) The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- (2) The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- (3) To avoid contamination on the display surface, do not touch the module surface with bare hands.
- (4) Keep a space so that the LCD panels do not touch other components.
- (5) Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- (6) Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
- (7) Do not leave module in direct sunlight to avoid malfunction of the ICs.

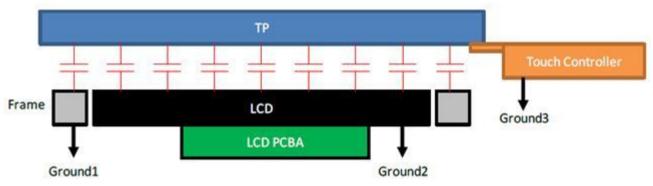
10-3 Static Electricity

- (1) Be sure to ground module before turning on power or operation module.
- (2) Do not apply voltage which exceeds the absolute maximum rating value.

10-4 Storage


- (1) Store the module in a dark room where must keep at +25±10 $^\circ\!C$ and 65%RH or less.
- (2) Do not store the module in surroundings containing organic solvent or corrosive gas.
- (3) Store the module in an anti-electrostatic container or bag.

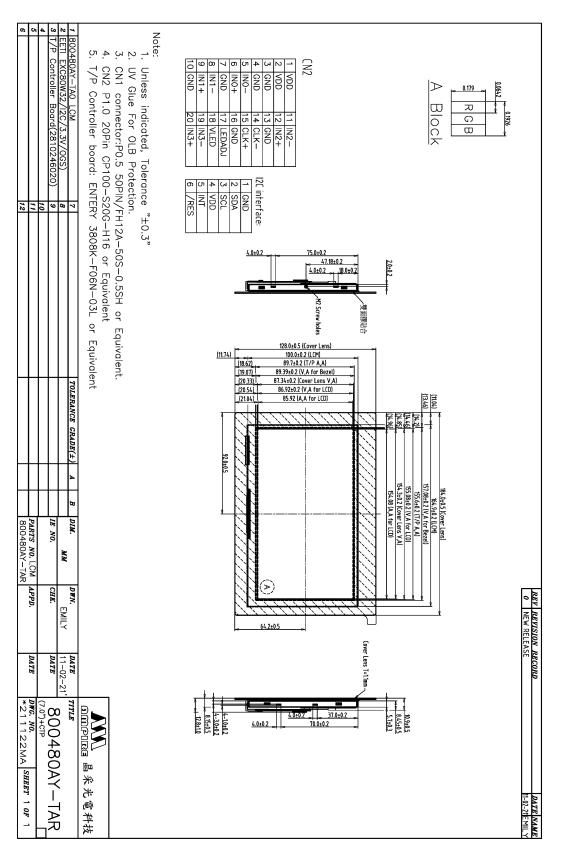
10-5 Cleaning

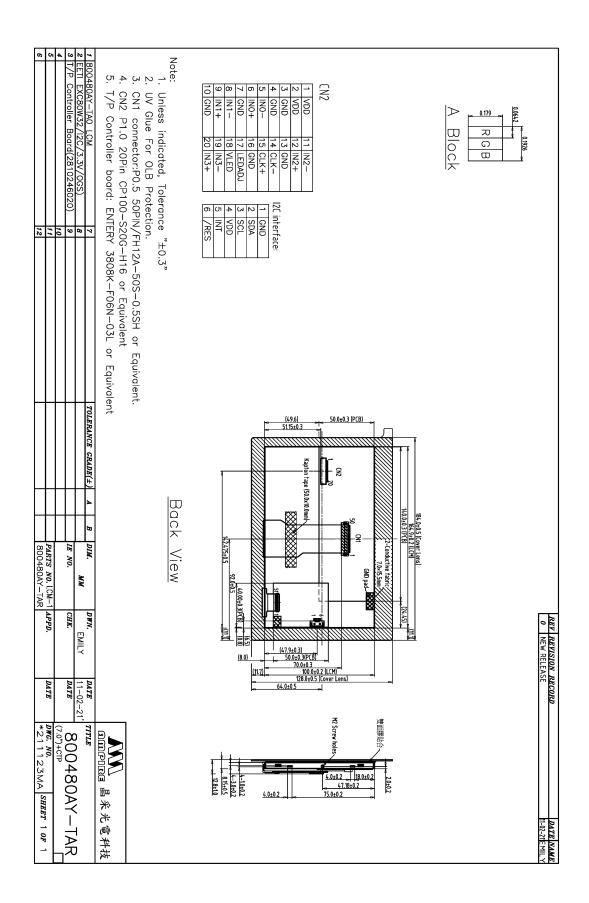

- (1) Do not wipe the polarizer with dry cloth. It might cause scratch.
- (2) Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

10-6 Mechanism

- (1) Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) The square adhesive tape which is between the touch panel and display can't provide well supporting in the long term and high ambient temperature condition. Whether upright or horizontal position the support holder which is in the back side of the display is needed. Do not let the display floating.

(3) TP needs to work in environment with stable stray capacitance. In order to minimize the variation in stray capacitance, all conductive mechanical parts must not be floating. Intermittent floating any conductive part around the touch sensor may cause significant stray capacitance change and abnormal touch function. It is recommended to keep all conductive parts having same electrical potential as the GND of the touch controller module.




GND1, GND2 and GND3 should be connected together to have the same ground

10-7 Others

- (1) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- (2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver

11. Outline Dimension

