

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1280800Q9TZQW-T41H
APPROVED BY	
DATE	

□ Preliminary Specification

Formal Specification

APPROVED BY	CHECKED BY	ORGANIZED BY
Patrick	Kokai	Mark

This Specification is subject to change without notice.

Date : 2020/12/28

AMPIRE CO., LTD.

1

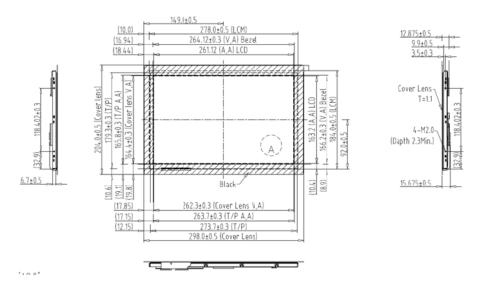
RECORD OF REVISION

Revision Date	Page	Contents	Editor
2020/12/28		New Release	Mark

1. GENERAL DESCRIPTION

The screen format is intended to support 1280H) x 800(V)screen and 16.7M(RGB 8-bits) $_{\circ}$

Enhance display color performance by wide color gamut LED Back-light.


Projective Capacitive Touch Panel

- Controller:EXC80W46
- Interface: mini-USB
- Cover Glass: 1.1mm

1.1 Display Characteristics

The following items are characteristics summary on the table under 25 $\,^\circ C\,$ condition:

Item	Specifications	unit
Screen Diagonal	12.1	inch
Display resolution(dot)	1280 (RGB) x 800	dots
Display area	261.1 (W) x 163.2 (H)	mm
Pixel pitch	0.204(W) x 0.204 (H)	mm
Color configuration	R.G.B Vertical stripe	
Display Mode	SFT, Normally Black	
Brightness	1020	cd/m ²
Backlight unit	LED	
Display color	16.7M	colors
Electircal Treatment	1 channel LVDS , 6/8bit selectable	

2. Input/Output Terminals 2.1 TFT LCD Panel

Mating Connector: 093G30-B0001A-G4(Starconn) or compatible

Pin	Name	I/O	Description
1	NC	-	No Connection
2	NC	-	No Connection
3	NC	-	No Connection
4	NC	-	No Connection
5	NC	-	No Connection
6	NC	-	No Connection
7	GND	Р	Power ground
8	GND	Р	Power ground
9	VDD	Р	Power Supply +3.3V
10	VDD	Р	Power Supply +3.3V
11	GND	Р	Power ground
12	GND	Р	Power ground
13	Rxin0-	I	-LVDS differential data input(R0~R5,G0)
14	Rxin0+	I	+LVDS differential data input(R0~R5,G0)
15	GND	Р	Power ground
16	Rxin1-	I	-LVDS differential data input(G1~G5,B0~B1)
17	Rxin1+	Ι	+LVDS differential data input(G1~G5,B0~B1)
18	GND	Р	Power ground
19	Rxin2-	Ι	-LVDS differential data input(B2~B5,-,-,DE)
20	Rxin2+	Ι	+LVDS differential data input(B2~B5,-,-,DE)
21	GND	Р	Power ground
22	RxCLK-	Ι	-LVDS differential data input
23	RxCLK+	Ι	+LVDS differential data input
24	GND	Р	Power ground
25	Rxin3-		-LVDS differential data input(R6~R7,G6~G7,B6~B7)
26	Rxin3+		+LVDS differential data input(R6~R7,G6~G7,B6~B7)
27	GND	Р	Power ground
28	SEL6/8	-	Low>6 bit input mode High or NC>8 bit input mode
29	GND	Р	Power ground
30	GND	Р	Power ground

Note: I/O definition:

I-----Input P----Power/Ground

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

GND=0V

Item	Symbol	MIN	MAX	Unit	Remark
Voltage Input	Vin	-0.5	5.0	V	Note1
Operation Temperature	TOP	-30	85	°C	
Storage Temperature	TST	-30	85	°C	
	RH	-	≦95	%	Ta≦40°C
			≦85	%	40°C <ta≦50°c< td=""></ta≦50°c<>
Relative Humidity (Note2)			≦55	%	50°C <ta≦60°c< td=""></ta≦60°c<>
				≦36	%
			≦24	%	70°C <ta≦80°c< td=""></ta≦80°c<>
Absolute Humidity	AH		≦70	g/m ³	Ta>70°C

Table 3.1 absolute maximum rating

Note1: Input voltage include Rxin0-/+, Rxin1-/+, Rxin2-/+, Rxin3-/+, RxCLK-/+, SEL6/8,VDD.

Note2: Ta means the ambient temperature. It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

4. ELECTRICAL CHARACTERISTICS

4.1 Driving TFT LCD Panel

VDD=3.3V,GND=0V, Ta=25°C

Item		Symbol	Min	Тур	Max	Units	Remark
Power supply '	Voltage	VDD	3.0	3.3	3.6	V	
Power supply	ripple	V _{P-P}	-	-	100	mV	
Power supply	current	I _{DD}	-	TBD	-	mA	
Power comsu	mption	Р	-	TBD	-	mW	Note 1
Differential input voltage		Vid	200	-	600	mV	
Differential input con	Differential input common voltage		-	1.2	-	V	
Differential input		VTL	-100	-	-	mV	
threshold voltage Hight level		VTH	-	-	100	mV	
Inrush Cur	rent	I _{rush}			1.5	А	

Table 4.1 LCD module electrical characteristics

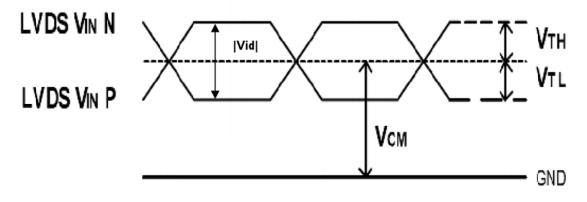
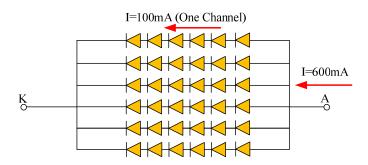


Fig 4.1 LVDS characteristics

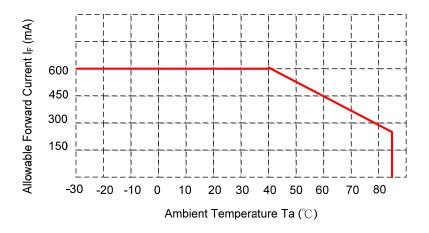
Note1: To test the current dissipation, using the "white pattern" shown.

4.2 LED Driving Conditions

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
LED Backlight Voltage	V_{F}	16.2	18	21.6	V	For reference
LED Backlight Current	I _F	-	600		mA	Ta=25°C
LED Life Time			50K	-	KHr	


Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: VF, IF are defined for LED B/L.


- Note 3: If the module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.
- Note 4: Operating life means brightness goes down to 50% minimum brightness.

LED life time is estimated data. Ta=25°C

Note 5: the structure of LED B/L shows as below.

When LCM is operated over 40°C ambient temperature, the IF should be follow :

5 Timing Chart

5.1 LVDS signal timing characteristics

VDD=3.3V, GND=0V, Ta=25°C

Parameter	Symbol	Min	Тур	Max	Unit
CLK frequency	1/t _C	67	71	75	MHz
Horizontal display area	thd	-	1280	-	tc
Horizontal period	th	1290	1440	-	tc
Vertical display area	tvd	-	800	-	th
Vertical period	tv	810	823	-	th
Frame Rate	F	-	60	-	HZ

5.2 Input Clock and Data timing Diagram:

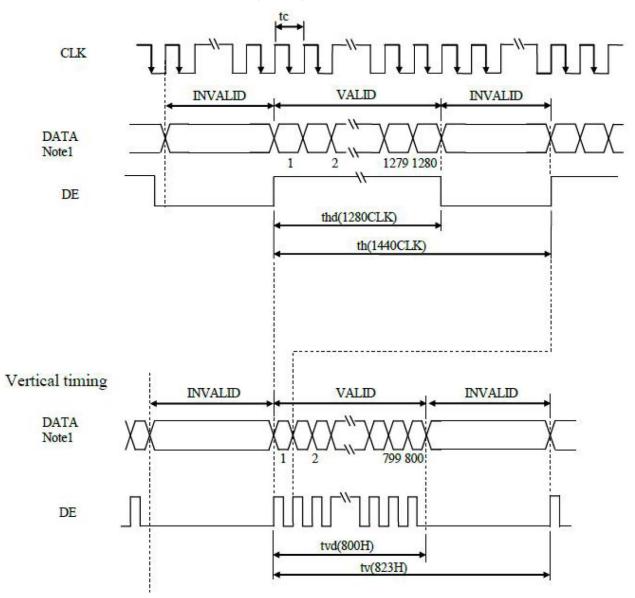
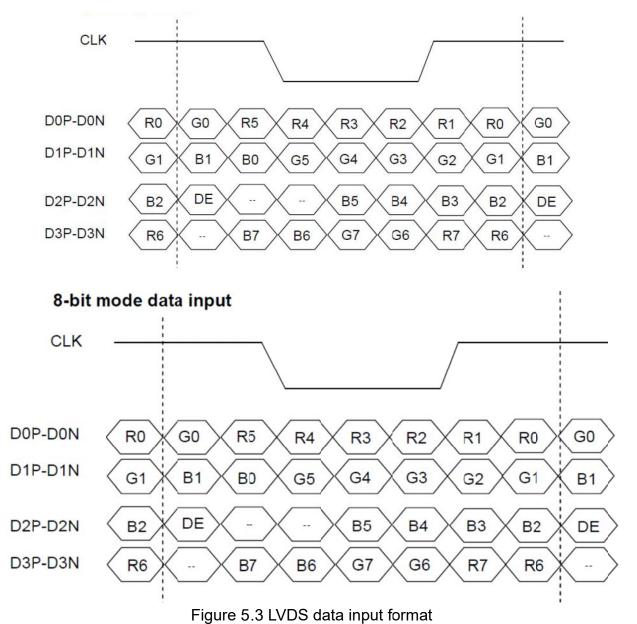



Figure 5.2 Input signal data timing

5.3 LVDS data input format

8-bit mode data input

Note: This LCD module supports DE mode only, so HSYNC&VSYNC signal can be ignored.

5.4 Power On/Off Sequence

Item	Symbol	Min	Тур	Max	Unit
VDD on to VDD stable	Tp1	0.5	-	10	ms
VDD stable to signal on	Tp2	0	-	50	ms
Signal on to VLED_EN on	Tp3	200	-	-	ms
PWM on to VLED_EN on	Tp4	0	-	200	ms
VLED to PWM on	Tp5	10	-	-	ms
VLED on to VELD stable	Tp6	0.5	-	10	ms
VDD off time	Tp7	0	I	10	ms
VDD off to next VDD on	Tp8	500	I	I	ms
Signal off before VDD off	Tp9	0	-	50	ms
VLED_EN off before signal off	Tp10	200	-	-	ms
VLED_EN off before PWM off	Tp11	0	-	200	ms
PWM off before VLED off	Tp12	10	-	-	ms

Table 5.4 Power on/off sequence

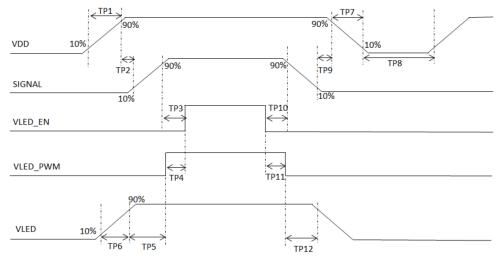
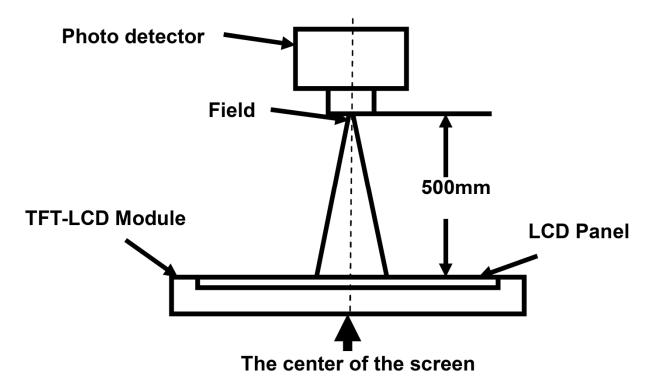


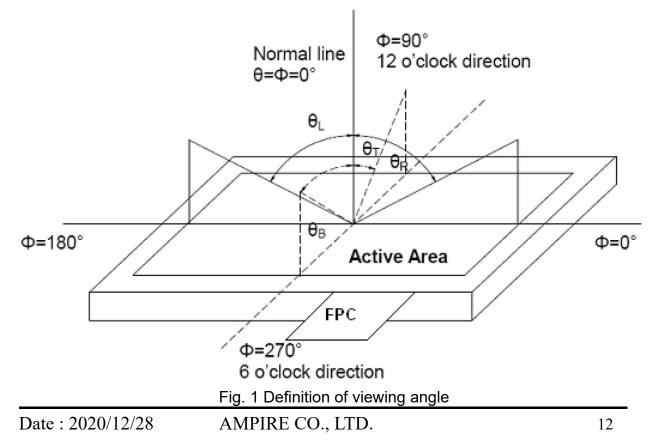
Figure 5.4 Interface power on/off sequence

6 Optical specification

6.1 Optical characteristic of the LCD


Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark						
				75	89									
				75	89		5							
View Ang	les	θL	CR≧10	75	89		Degree	Note 2						
		θR		75	89									
Contrast R	Ratio	CR	θ=0°	800	1000			Note 1 Mote 3						
		T _{ON}	12		Note 1									
Response	Time	T _{OFF}	25 ℃		13		ms	Note 4						
	White	Х			0.329									
	VVIIIC	Y									0.376			
	Red	X			0.664									
Chromaticity		Y	Backlight is ON	-0.05	0.320	+0.05		Note 1						
	Green	X Y	IS ON		0.281			Note 5						
		X			0.145									
	Blue	Y				0.094								
Uniformi	ty	U		70	75		%	Note 1 Note 6						
NTSC					94		%	Note 5						
Luminan		L		816	1020		Cd/m ²	Note 1 Note 7						

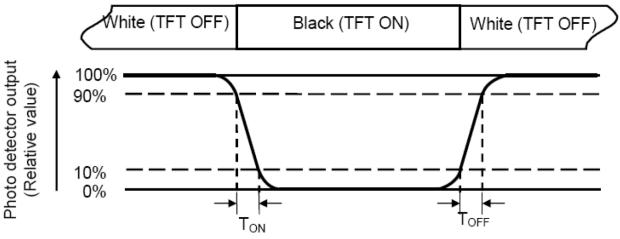
Test Conditions:


- 1. The ambient temperature is $25\pm2^\circ\!\mathrm{C}$.humidity is $65\pm7\%$
- 2. The test systems refer to Note1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE (ergo-80).



Note 3: Definition of contrast ratio

$$Contrast ratio(CR) = \frac{Luminance measured when LCD is on the "White" state}{Luminance measured when LCD is on the "Black" state}$$

"White state ": The state is that the LCD should driven by V_{white}.
"Black state": The state is that the LCD should driven by V_{black}.
V_{white}: To be determined V_{black}: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = $\frac{L_{min}}{L_{max}}$ L-----Active area length W----- Active area width

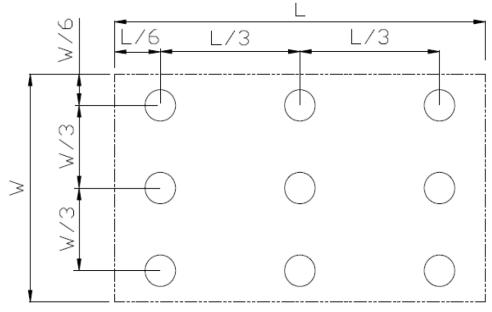


Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position. Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance :

Measure the luminance of white state at center point.

7 Projected capacitive-type touch panel specifications

7.1 Basic Characteristic

ITEM	SPECIFICATION				
Туре	Projective Capacitive Touch Panel				
Activation	Two-fingers or Single-finger				
X/Y Position Reporting	Absolute Position				
Touch Force	No contact pressure required				
Calibration	No need for calibration				
Report Rate	Approx. 80 points/sec				
Control IC	EXC80W46				

7.2 Electrical Absolute Max Rating

Item	Symbol	Value		Unit	Note	
item		Min.	Max.	Unit	Note	
Power supply voltage	VIN	-0.3	5.5	V	GND=0V	

7.3 ELECTRICAL CHARACTERISTICS

Specify the normal operating condition (PGND=0V)

ltem	Symbol	Min.	Тур.	Max.	Unit	Note
Power supply voltage	VIN	-	5	-	V	

Interface				
Pin No.	Symbol	Function		
1	GND	Ground		
2	DA-	USB Data-		
3	DA+	USB Data+		
4	VIN	Power supply		
5	NA	NC		
6	NA	NC		

8 Reliability Test Items

Test Item	Test Conditions	Note
High Temperature Operation	Ts = 85°C, t=240 hrs	
Low Temperature Operation	Ta = -30°C, t=240 hrs	
High Temperature Storage	Ta = 85°C, t=240 hrs	1,2
Low Temperature Storage	Ta = -30°C, t=240 hrs	1,2
Storage at High Temperature and Humidity	Ta = 60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-30°C (30min) ~ 80°C (30min) Change time:5min, 100 cycles	1,2
Vibration Test (Packing)	Frequency range: $10 \sim 55$ Hz, Stroke:1.5mm Sweep:10Hz ~ 55 Hz ~ 10 Hz 2hours for each direction of X.Y.Z (6 hours total)	2

Note(1) Condensation of water is not permitted on the module.

Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH)

- Note(3) The module shouldn't be tested over one condition, and all the tests are independent.
- Note(4) All reliability tests should be done without the protective film.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9 USE PRECAUTIONS

9.1 Handling Precautions

- 9.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 9.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 9.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 9.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 9.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
 - Solvents other than those mentioned above may damage the polarizer.

Especially, do not use the following:

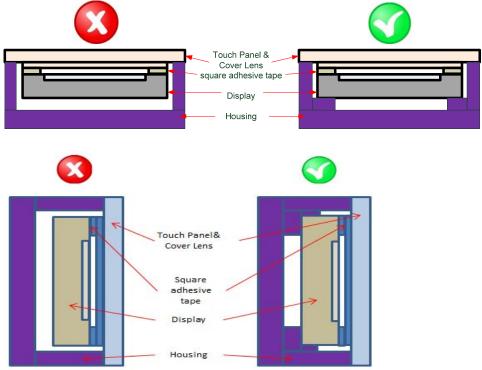
- Water
- Ketone
- Aromatic solvents
- 9.1.6. Do not attempt to disassemble the LCD Module.
- 9.1.7. If the logic circuit power is off, do not apply the input signals.
- 9.1.9. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 9.1.9.1. Be sure to ground the body when handling the LCD Modules.
- 9.1.9.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 9.1.9.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 9.1.9.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

9.2 Storage Precautions

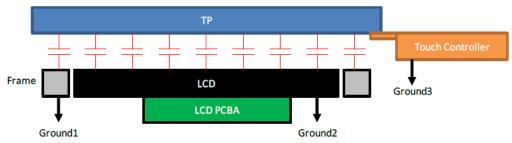
- 9.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 9.2.2. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is: Temperature : 0°C ~ 40°C Relatively humidity: ≤80%
- 9.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

9.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

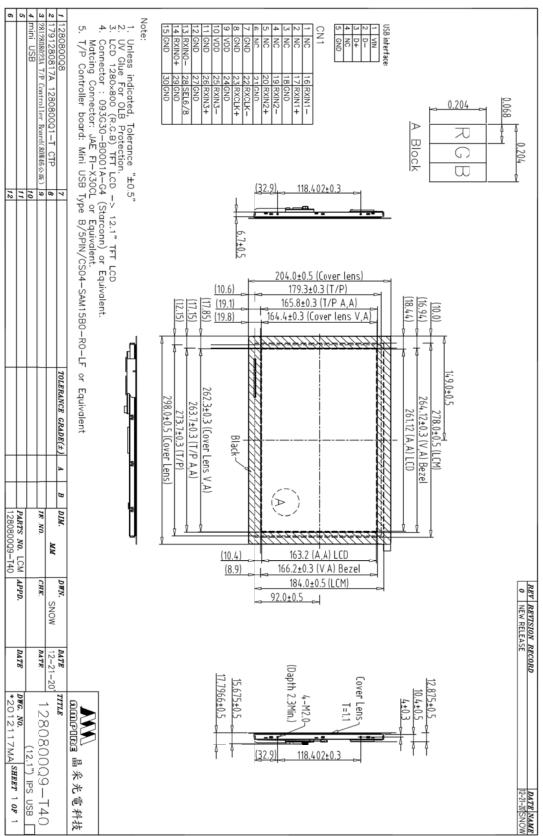

9.4 Other

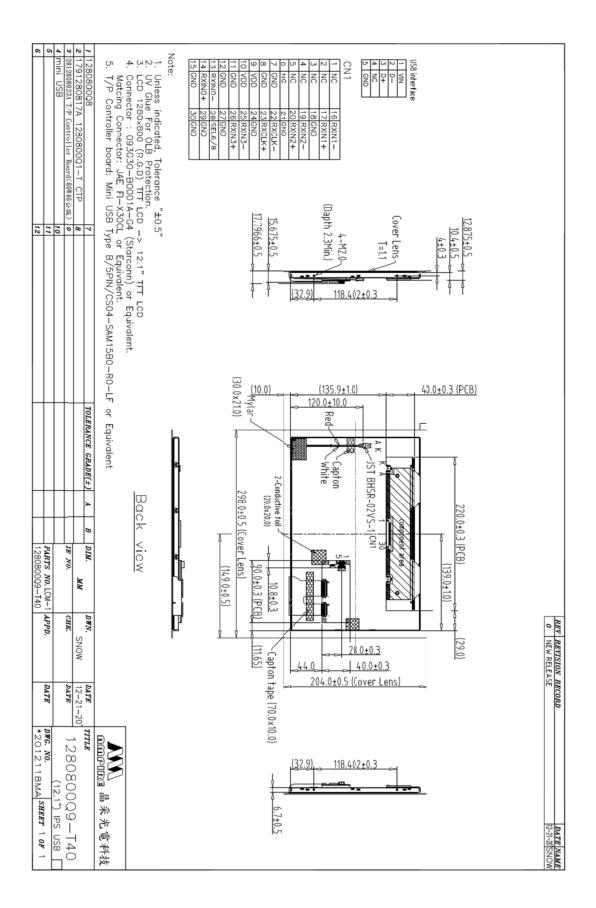
- 9.4.1 AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- 9.4.2 Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.


9.5 Mechanism (if the LCM using air bonding)

(1) Please mount LCD module by using mounting holes arranged in four corners tightly.

(2) The square adhesive tape which is between the touch panel and display can't provide well supporting in the long term and high ambient temperature condition. Whether upright or horizontal position the support holder which is in the back side of the display is needed. Do not let the display floating.




(3) TP needs to work in environment with stable stray capacitance. In order to minimize the variation in stray capacitance, all conductive mechanical parts must not be floating. Intermittent floating any conductive part around the touch sensor may cause significant stray capacitance change and abnormal touch function. It is recommended to keep all conductive parts having same electrical potential as the GND of the touch controller module.

GND1, GND2 and GND3 should be connected together to have the same ground

10. OUTLINE DIMENSION

