

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-800480BDTZQW-01H
APPROVED BY	
DATE	

- **□**Approved For Specifications
- □ Approved For Specifications & Sample

APPROVED BY	CHECKED BY	ORGANIZED BY

Date: 2019/08/21 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
Revision Date 2019/07/15 2019/08/21	Page 4 15	New Release Modify OP of module Modify OP of module	Editor Raymond Raymond

1.0 General Descriptions

4.3 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module.

This module is composed of a 4.3" TFT-LCD panel and backlight unit.

1.1 Features

- 4.3 inch (16:9 diagonal) configuration
- 16.2M colors (R, G, B, 8bit digital each)
- RoHS

1.2 Product Summary

NO	ltem	Item Specification			
1	LCD Size	4.3 inch (Diagonal)			
3	Resolution	800 x 3 (RGB) x 480			
4	Display Mode	Normally Black.			
5	Pixel pitch	0.1188 (W) x 0.1122(H) mm			
6	Active area	95.04(W) x 53.856(H) mm			
7	Module Size	105.3(W) x 67.0(H) x 2.8(T) mm	Note 1		
8	interface	RGB			
9	Color arrangement	RGB-stripe			
10	Luminance	500 cd/m ²	cd/m ²		
11	Viewing Direction	All direction			

(Note1) Refer to the mechanical drawing.

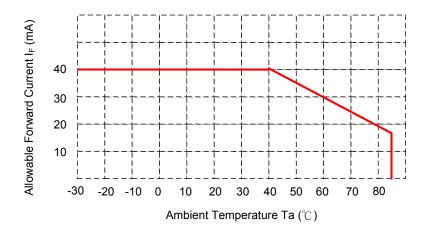
2.0 Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remakes
Supply Voltage	V_{DD}	-0.3	5.0	V	1
Input Voltage of Logic	Vı	-0.3	5.0	V	Note 1
Operating Temperature	Тор	-30	85	$^{\circ}\! \mathbb{C}$	Note 2
Storage Temperature	T _{ST}	-30	85	$^{\circ}\!\mathbb{C}$	Note 2

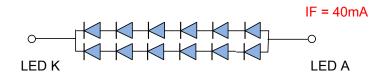
- Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.
- Note2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
- Background color, contrast and response time would be different in temperatures other than 25 $^{\circ}$ C.
- -Operating under high temperature will shorten LED lifetime.

3.0 ELECTRICAL CHARACTERISTICS

3.1 LCD CHARACTERISTICS

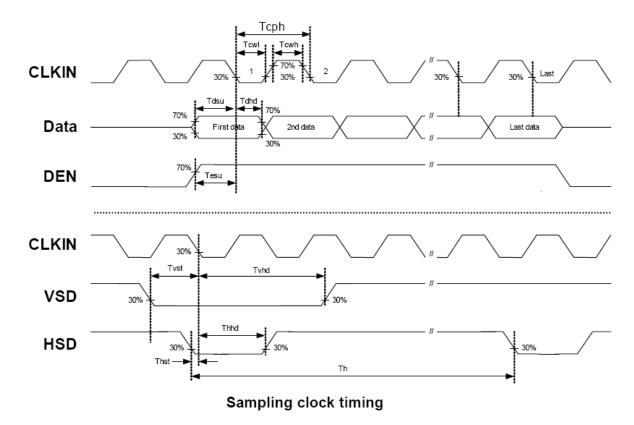

Item	Symbol	Min.	Тур.	Max.	Unit	Note
LCD Supply Voltage	VDD	3.0	3.3	3.6	٧	-
Logic Input Voltago	VIH	0.7VDD	ı	VDD		
Logic Input Voltage	VIL	GND	-	0.3VDD	٧	
LCD Supply Current	IVDD	-	160	-	mA	(1)

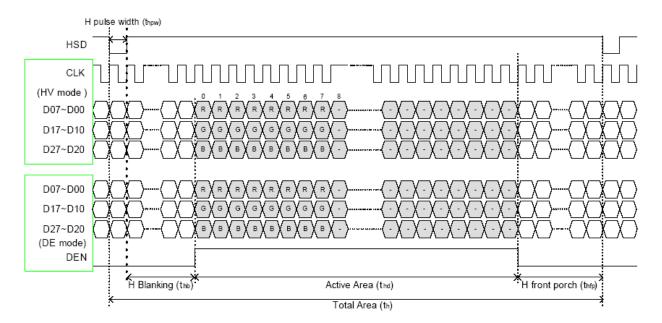
Note1: Ta=25° ⊂ , Display pattern : All White


3.2 BACKLIGHT CHARACTERISTICS

Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED Forward Current	IF	-	40		mA	Ta=25°C
LED Forward Voltage	VF		19.2		V	I _F =40mA, Ta=25°ℂ
LED life time			50,000	-	Hr	I _F =40mA, Ta=25°ℂ

- The constant current source is needed for white LED back-light driving.
- When LCM is operated over 40°C ambient temperature, the IF should be follow :

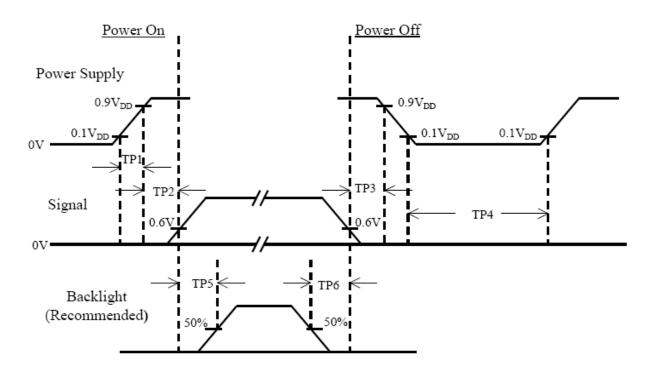



6 LED Serial x 3 LED Parallel

4.0 TIMING

4.1 time table

Horizontal display timing range


4.2.1 Horizontal timing

Parameter	Symbol	Min.	Тур.	Max	Unit	Note
Horizontal Display Area	thd	-	800	-	DCLK	
DCLK frequency	fclk	-	30	50	MHz	
One Horizontal Line	th	889	928	1143	DCLK	
HS pulse width	thpw	1	48	255	DCLK	
HS Back	thbp	-	88	-	DCLK	
Porch(Blanking)						
HS Front Porch	thfp	1	40	255	DCLK	
DE Mode Blanking	th-thd	85	128	512	DCLK	

4.2.2Vertical timing

Parameter	Symbol	Min.	Тур.	Max	Unit	Note
Vertical Display Area	tvd	-	480	-	th	
VS period time	tv	513	525	767	th	
VS pulse width	tvpw	3	3	255	th	
VS Back	tvbp	-	32	-	th	
Porch(Blanking)						
HS Front Porch	tvfp	1	13	255	th	
DE Mode Blanking	tv-thd	4	45	255	th	

5.0 Power On / Off Sequence

Item	Min.	Тур.	Max.	Unit	Remark
TP1	0.5		10	msec	
TP2	0		50	msec	
TP3	0		50	msec	
TP4	500			msec	
TP5	200			msec	
TP6	200			msec	

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signal on the low or keep a high impedance.
- (4) TP4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

6.0 INTERFACE

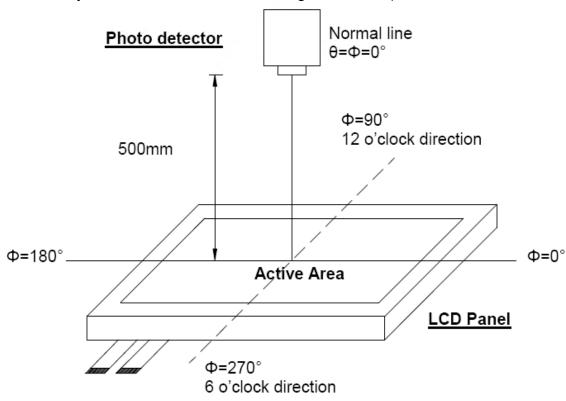
<u> </u>	/ ()	
Pin No	Symbol	Function
1	LEDK	Power for LED backlight cathode
2	LEDA	Power for LED backlight anode
3	GND	Power Ground
4	VDD	Power Supply for LCD
5	R0	Red data (LSB)
6	R1	Red data
7	R2	Red data
8	R3	Red data
9	R4	Red data
10	R5	Red data
11	R6	Red data
12	R7	Red data (MSB)
13	G0	Green data (LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data
19	G6	Green data
20	G7	Green data (MSB)
21	В0	Blue data (LSB)
22	B1	Blue data
23	B2	Blue data
24	B3	Blue data
25	B4	Blue data
26	B5	Blue data
27	В6	Blue data
28	B7	Blue data(MSB)
29	GND	Power Ground
30	DCLK	Clock Signals
31	DISP	Display on/ off
32	Hsync	Horizontal SYNC.
33	Vsync	Vertical SYNC.
34	DE	Data Enable
35	NC	No connect
36	GND	Power Ground
37	NC	No connect
38	NC	No connect
39	NC	No connect
40	NC	No connect

7.0 Optical Specifications

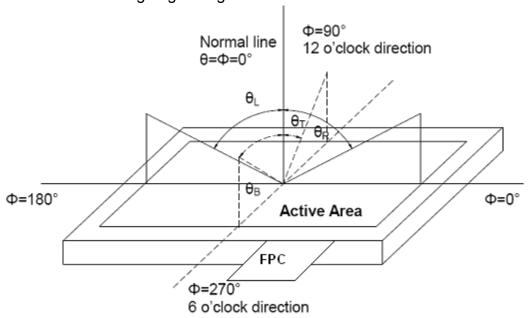
7.1 TFT Optical Characteristics

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	
					80	-			
Viou Angle		θВ	CR≧10		80	1	Dograd	Note 2	
View Angle	28	θL	UN≦ IU		80	1	Degree	Note 2	
		θR			80	1			
Contrast Ra	atio	CR	θ=0°	600	700	1		Left/right 0° Top/bottom 5°	
Response T	ime	$T_{ON}+T_{OFF}$	25 ℃	30	40		ms	Note1, Note4	
Chromaticity	White	х		0.05	0.313	.0.05		Note1 Note5	
Chilomaticity	vviile	у		-0.05	0.339	+0.05		Note1, Note5	
Uniformit	y	U		70		-	%	Note1 · Note6	
Luminanc	e	L		400	500	-	cd/m ²	Note7	

Test Conditions:


- 1. I_F = 40mA(one channel), the ambient temperature is 25°C.
- 2. The test systems refer to Note 1 and Note2.

Note 1: Definition of optical measurement system.


The optical characteristics should be measured in dark room. After 10 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° / Height: 500mm.)

2: Definition of viewing angle range

Note

Note 3: Definition of Response time

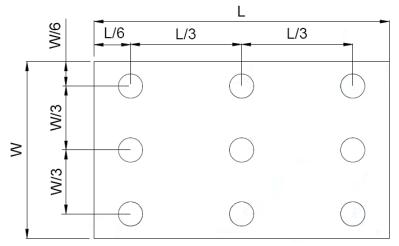
The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Toff) is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio

Contrast Ratio(CR) = $\frac{Luminance\ measured\ when\ LCD\ on\ the\ "White"\ state}{Luminance\ measured\ when\ LCD\ on\ the\ "Black"\ state}$

Note 5 : Definition of color chromaticity (CIE1931)

Color coordinated measured at center point of LCD.


Note 6 : All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to bellow figure). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity
$$(Y_u) = \frac{B_{min}}{B_{max}}$$

L ---- Active area length W ---- Active area width

 Bmax : The measured maximum luminance of all measurement position. $\mathsf{Bmin} : \mathsf{The} \ \mathsf{measured} \ \mathsf{minimum} \ \mathsf{luminance} \ \mathsf{of} \ \mathsf{all} \ \mathsf{measurement} \ \mathsf{position}.$

8.0 Reliability Test Items

Test Item	Test Conditions	Note
High Temperature Operation	85±3°C , t=240 hrs	
Low Temperature Operation	-30±3°C , t=240 hrs	
High Temperature Storage	85±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-30°C (30min) ~ 85°C (30min) 50 cycles	1,2
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

- Note(1) Condensation of water is not permitted on the module.
- Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note(3) The module shouldn't be tested more than one condition, and all the test conditions are independent.
- Note(4) All the reliability tests should be done without protective film on the module.

9. GENERAL PRECAUTION

9.1 Use Restriction

 This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

9.2 Disassembling or Modification

2. Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. AMPIRE does not warrant the module, if customers disassemble or modify the module.

9.3 Breakage of LCD Panel

- If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- 2. If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- 3. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- 4. Handle carefully with chips of glass that may cause injury, when the glass is broken.

9.4 Electric Shock

- 1. Disconnect power supply before handling LCD module.
- 2. Do not pull or fold the LED cable.
- Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

9.5 Absolute Maximum Ratings and Power Protection Circuit

- 1. Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- 2. Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- 3. It's recommended to employ protection circuit for power supply.

9.6 Operation

- 1. Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- 2. Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- 3. When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may cause deformation or color fading.
- 5. When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzene or other adequate solvent.

9.7 Static Electricity

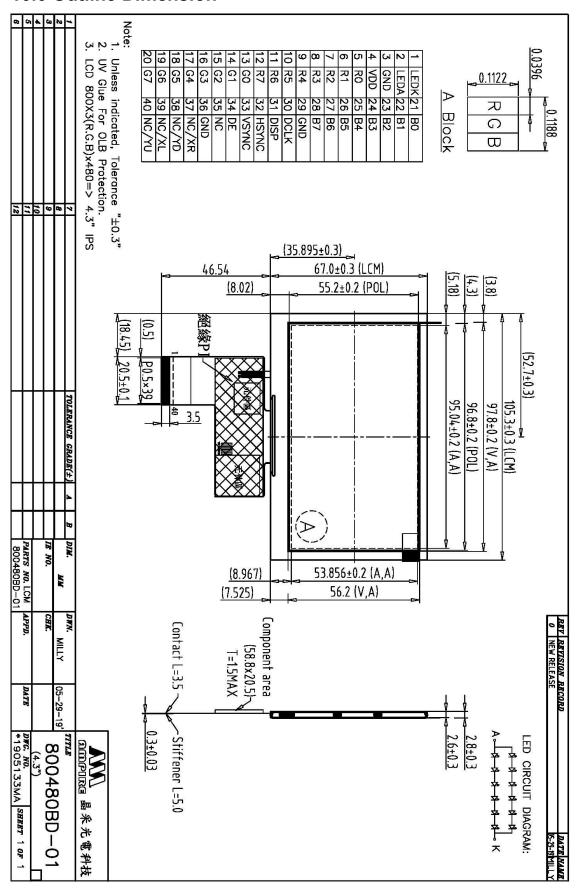
- Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- Because LCD modules use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

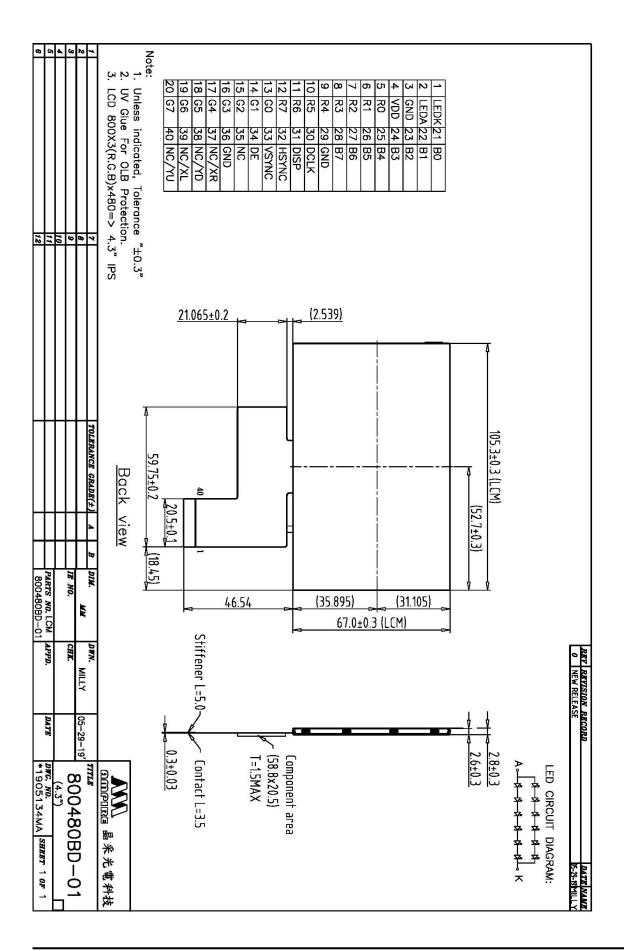
9.8 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

9.9 Disposal

When disposing LCD module, obey the local environmental regulations.


9.10 Others


Date: 2019/08/21

- Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
- 2. AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

10.0 Outline Dimension

Date: 2019/08/21

